
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparison of Integrated and Sequential Design Approaches for Fatigue Analysis of a Jacket Offshore Wind Turbine Structure
doi: 10.15488/4569
Comparison of Integrated and Sequential Design Approaches for Fatigue Analysis of a Jacket Offshore Wind Turbine Structure
One of the most important criteria in the design of fixed offshore wind turbine structures is fatigue resistance. There is an unabated need for research in order to improve and optimize current design methods. There are mainly two approaches for structural analysis available in the offshore industry: the Integrated Design Approach (IDA) and the Sequential Design Approach (SDA). Within the IDA, the entire wind turbine, consisting of the jacket structure including tower and the rotor nacelle assembly (RNA), is considered as a unique system exposed to wind- and wave-induced loads in an aero-hydro-elastic solver. In SDA, the jacket structure is converted into a superelement and implemented into an aero-elastic solver, where it is expanded by an RNA in order to obtain the wind-induced interface loads. The obtained interface loads are used for further analysis in a more advanced offshore code, where the wave-induced loads are simulated. The fatigue damage of the relevant K-joint in the support structure is afterwards compared to the one obtained in terms of IDA. Apart from the judgement about advantages and disadvantages of both approaches, this work benefits from confirming the reliability and applicability of both approaches.
- DNV GL (Norway) Norway
- DNV GL (Norway) Norway
- University of Hannover Germany
Offshore wind turbines, jacket structure, sequential design approach, Bladed, superelements, SESAM, Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau::624 | Ingenieurbau und Umwelttechnik, integrated design approach, Dewey Decimal Classification::300 | Sozialwissenschaften, Soziologie, Anthropologie::330 | Wirtschaft::333 | Boden- und Energiewirtschaft::333,7 | Natürliche Ressourcen, Energie und Umwelt
Offshore wind turbines, jacket structure, sequential design approach, Bladed, superelements, SESAM, Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau::624 | Ingenieurbau und Umwelttechnik, integrated design approach, Dewey Decimal Classification::300 | Sozialwissenschaften, Soziologie, Anthropologie::330 | Wirtschaft::333 | Boden- und Energiewirtschaft::333,7 | Natürliche Ressourcen, Energie und Umwelt
5 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
