
Found an issue? Give us feedback
Journal of Materials Research
Article . 2001 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Chemical–mechanical polishing of copper and tantalum with silica abrasives

NSF| MRI: Acquisition of Instrumentation for a Thin Film Characterization Facility
Authors: Suryadevara V. Babu; Yuzhuo Li; M. Hariharaputhiran;
Abstract
Chemical mechanical polishing of copper and tantalum was performed using fumed amorphous silica abrasive particles dispersed in H2O2, Fe(NO3)3, and glycine solutions. Results showed that in DI water silica did not polish Cu but Ta had a relatively high polish rate. Cu polish rate decreased with increasing particle concentration in Fe(NO3)3-based slurries due to the adsorption of Fe3+ on the silica surface. Addition of H2O2 enhanced Cu polish rate but reduced Ta polish rate. The specific surface area of the particles played an important role in the removal of Ta and Cu, presumably due to some chemical bonding between the materials being polished and the silica particles.
Related Organizations
- Center for Advanced Materials Qatar
- Clarke University United States
- Center for Advanced Materials Qatar
- Clarke University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
53
Top 10%
Top 10%
Top 10%
Fields of Science (3) View all