
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Surfactant Mediated Slurry Formulations for Ge CMP Applications

doi: 10.1557/opl.2013.971
handle: 10679/2813
ABSTRACTIn this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry.
- Özyeğin University Turkey
- King Abdullah University of Science and Technology Saudi Arabia
- King Abdullah University of Science and Technology Saudi Arabia
- Özyeğin University Turkey
Ge, CMP, Self-assembly
Ge, CMP, Self-assembly
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
