Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

“The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate

Authors: Kovalenko, Vadym; Kotok, Valerii;

“The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate

Abstract

Nickel hydroxide is widely used as an active material of supercapacitors. The most active are samples of Ni(OH) 2 with (α+β) layered structure synthesized in a slit diaphragm electrolyzer. However, the processes that occur during filtering and drying , negatively impact electrochemical activity. The influence of microwave treatment of different times (from 0.5 to 5 min) on the structure, surface morphology and porous structure, and also on the electrochemical properties of nickel hydroxide samples prepared in a slit diaphragm electrolyzer , has been studied. A hypothesis was proposed on the existence of the “popcorn effect”: short-term high-power microwave irradiation of the wet sample would result in water boiling and internal explosion of the sample. Treated and untreated samples were studied by means of X-ray diffraction analysis, scanning electron microscopy and BET nitrogen adsorption-desorption. Electrochemical characteristics were studied by means of galvanostatic charge-discharge cycling in the supercapacitor regime. The existence of the “popcorn effect” has been confirmed by increased sample thickness after microwave treatment by 1.94 times, specific surface area 2.13 times, pore volume by 2.66 times, and average pore diameter by 1.46 times, It was discovered , that increasing treatment duration to 2–5 min leads to microwave drying. XRD results revealed the occurrence of ageing (crystallization) processes of nickel hydroxide during thermal drying and their absence upon realization of the “popcorn effect”. This results in the formation of X-ray amorphous samples. Comparative analysis of electrochemical characteristics of treated and untreated Ni(OH) 2 samples was performed. An increase of specific capacity at high current densities (80 and 120 mA/cm 2 ) for treated samples was observed: by 10.9 % upon microwave drying, 24–42 % upon realization of the “popcorn effect”. The maximum capacity of 231.1 F/g has been observed for the sample, in which the “popcorn effect” was realized the most. However, microwave treatment resulted in lower capacities at low cycling current density. This is related to the thermal treatment of the particle surface, caused by rapid boiling of water. A magnetron of a higher power is required for avoiding this negative effect

Keywords

nickel hydroxide; specific capacity; supercapacitor; microwave treatment;specific surface area; ageing, гідроксид нікелю; питома ємність; суперконденсатор; мікрохвильоваа обробка; питома поверхня; старіння, UDC 54.057:544.653:621.13:661.13, гидроксид никеля; удельная емкость; суперконденсатор; микроволновая обработка; удельная поверхность; старение

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
gold