Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Testing a microwave device for the treatment of plant materials by various technologies

Authors: Irina Boshkova; Natalya Volgusheva; Leonid Boshkov; Myhailo Potapov; Natalia Kolesnychenko; Boris Demianchuk; Oleksandr Lapkin;

Testing a microwave device for the treatment of plant materials by various technologies

Abstract

We have tested the microwave device of continuous operation for the thermal treatment of plant materials, which was developed and designed to implement microwave technologies in the industry. The purpose of the tests was to assess the effectiveness of the microwave device by the indicators of quality of the obtained material and energy consumption determined by the efficiency of the conversion of microwave energy into the internal energy of the material. The effects of microwave treatment of a straw substrate for tree-destroying fungi were studied. The treatment quality was determined by the yield of Oyster (Pleurotus) mushrooms, grown on the obtained substrate. Microwave treatment was carried out in various modes, which differed in the value of specific power. When analyzing the effectiveness of microwave treatment, the results were compared with the data obtained during the application of the traditional technology of straw sterilization. It was shown that the harvest of Oyster mushrooms increased by 11 %. It was found that under the optimal mode, specific power was q v =8.68·10 5 W/m 3 , final temperature was t=96 °С, duration of treatment was 180 s. Based on the thermal calculations, the values of the microwave chamber efficiency η c were calculated; under the optimal mode, η c =62 %. The influence of the microwave treatment on the sowing characteristics of seed wheat grain was studied. The effectiveness of the microwave treatment was determined by the values of laboratory germination and seed germination energy. Under the optimal mode, the output power of magnetrons was ΣP out =0.6 kW, the grain consumption was G=2.1·10 -2 kg/s. The study of the microwave device operation showed that for this design, in order to ensure stable and uniform movement of the material along the product pipeline, it is necessary to maintain the movement speed that is not higher than 0.5 m/min. It is recommended to apply the tested microwave device of continuous operation on specialized farms

Keywords

microwave device; thermal treatment; straw material; seeds; optimal mode; energy efficiency, seeds, микроволновое устройство; термообработка; соломистый материал; семена; оптимальный режим; энергетическая эффективность, microwave device, straw material, optimal mode, UDC 621.365/ 620.92, thermal treatment, energy efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 3
  • 2
    views
    3
    downloads
    Data sourceViewsDownloads
    ZENODO23
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
2
3
Green
gold