Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An experimental study of Al2O3 nаnoparticles influence on caloric properties of propylene glycol based coolants

Authors: Igor Motovoy; Sergiy Artemenko; Olga Khliyeva; Vitaly Zhelezny; Yury Semenyuk; Aleksey Paskal;

An experimental study of Al2O3 nаnoparticles influence on caloric properties of propylene glycol based coolants

Abstract

Nanofluids are promising heat carriers, which contribute to the overall efficiency of energy systems. The main obstacle to the practical application of nanocoolants based on aqueous propylene glycol solutions is the lack of accurate data on their thermophysical properties. In the paper, experimental study (adiabatic calorimetry method) of the heat capacity and parameters of solid phase – liquid phase transitions of propylene glycol and coolant based on aqueous propylene glycol solution is carried out. Experimental study of the heat capacity of the liquid phase of the coolant based on an aqueous solution of propylene glycol with additives of Al 2 O 3 nanoparticles (up to 2.01 wt. %) in the temperature range of 235...338 K and propylene glycol with additives of Al 2 O 3 nanoparticles (1.03 wt. %) in the temperature range of 268…335 K is performed. The comparison of the temperature dependence of the effective heat capacity of coolants with changes in their internal structure is made. It is shown that adding water to propylene glycol increases the temperature and heat of the solid phase – liquid phase transition (the heat of the propylene glycol phase transition is 37.85 J∙g –1 , propylene glycol/water coolant (54/46 wt. %) – 77.97 J∙g –1 ). It is shown that additives of Al 2 O 3 nanoparticles both in propylene glycol and in the coolant based on an aqueous propylene glycol solution contribute to the reduction of the heat capacity of the liquid. The heat capacity decreases approximately in proportion to the increase in the concentration of nanoparticles. The effect of heat capacity reduction is greater at high temperatures (3.9 % at 265 K and 5.0 % at 325 K for the nanocoolant with an Al 2 O 3 nanoparticle concentration of 2.01 wt. %). The results obtained will improve the design quality of heat exchange equipment using nanocoolants. The results are useful for developing methods for predicting the specific heat of nanofluids

Keywords

heat capacity, теплоносій; пропіленгліколь; наночастинки; калоричні властивості; теплоємність; фазовий перехід; температура плавлення; адіабатний калориметр, coolant, melting point, теплоноситель; пропиленгликоль; наночастицы; калорическая свойства; теплоемкость; фазовый переход; температура плавления; адиабатный калориметр, adiabatic calorimeter, UDC 621.564.36+536.6, phase transition, propylene glycol, caloric properties, nanoparticles, coolant; propylene glycol; nanoparticles; caloric properties; heat capacity; phase transition; melting point; adiabatic calorimeter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 3
  • 2
    views
    3
    downloads
    Data sourceViewsDownloads
    ZENODO23
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
3
Green
gold