

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An analysis of tube thickness effect on shell and tube heat exchanger

An analysis of tube thickness effect on shell and tube heat exchanger
Heat exchangers are important equipment for the process of placing heat. The most widely used type of heat exchanger is shell and tube. This type is widely used because of its simple and easy design. Design of shell and tube heat exchangers is done by the side or shell variations to get the desired performance. Therefore, research is conducted to study the effect of tube thickness on heat transfer, pressure drop, and stress that occurs in the shell and tube heat exchanger so that the optimal tube thickness is obtained. In this research, the activities carried out are the design of heat exchangers for the production of oxygen with a capacity of 30 tons/day. The standard used in this study is the 9th edition heat exchanger design guidance document compiled by the Tubular Exchanger Manufacturer Association (TEMA). Analysis of the tube thickness effect on heat transfer, pressure drop, and stress was carried out using the SimScale platform. The effect of variations in tube thickness on heat transfer is that the thicker the tube, the lower the heat transfer effectiveness. The highest value of the heat exchanger effectiveness is 0.969 at the tube thickness variation of 0.5 mm. The lowest value of the heat exchanger effectiveness is 0.931 at the tube thickness variation of 1.5 mm. The effect of variations in tube thickness on pressure drop is that the thicker the tube, the higher the pressure drop. The highest value of pressure drop is in the variation in tube thickness of 1.5 mm, 321 Pa. The lowest value of drop pressure is in the variation of 0.5 mm tube thickness, which is 203 Pa. The thickness of the tube also increases the maximum stress on the components of the shell, head, tubesheet, baffle, and saddle, but the value is fluctuating
- Universiti Malaysia Terengganu Malaysia
- Muhammadiyah University of Yogyakarta Indonesia
- Muhammadiyah University of Yogyakarta Indonesia
- Universiti Malaysia Terengganu Malaysia
теплообменник, аналіз напруг, перепад тиску, tube thickness, анализ напряжений, теплообмінник, толщина труб, теплопередача, товщина труб, heat transfer, stress analysis, heat exchanger, перепад давления, pressure drop
теплообменник, аналіз напруг, перепад тиску, tube thickness, анализ напряжений, теплообмінник, толщина труб, теплопередача, товщина труб, heat transfer, stress analysis, heat exchanger, перепад давления, pressure drop
2 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 4 download downloads 2 - 4views2downloads
Data source Views Downloads ZENODO 4 2


