Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Review of Electrical Engineering (IREE)
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Second-Order Sliding Mode Control of a Smart Inverter for Renewable Energy System

Authors: Meo, Santolo; SORRENTINO, VINCENZO; Zohoori, Alireza; Vahedi, Abolfazl;

Second-Order Sliding Mode Control of a Smart Inverter for Renewable Energy System

Abstract

In the paper the authors proposes a Second-Order Super-Twisting Integral Sliding Mode Control for a Grid-connected Double-Stage AC-DC/DC-AC Power Converter (DSACPC) of a renewable electrical energy system. The DSACPC consists of a Permanent Magnet Synchronous Generator (PMSG) directly connected to the renewable electric source, a generator-side controlled rectifier and a grid-side inverter. The proposed control strategy applied both to two stages is able to maximize the extracted energy from the renewable source, while to regulate the DC-link voltage and to achieve unity power factor and low distortion currents. The employed control strategy can regulate both the reactive and active power given to the utility grid independently and consents to the system to be enclosed in a smart-grid thanks to its performance. In fact the system giving the desired active power to the grid can be used also as a reactive power compensator in grid balanced conditions or as a system of current harmonic rejection in the case of unbalanced conditions of the grid. For the formulation of the control a sliding-Mode Observer is designed. Simulations and experimental results prove the high efficiency and high performance of the full proposed control system.

Country
Italy
Keywords

Renewable energy, Boost-type PWM rectifier; Dc-link voltage control; Double-stage Ac-Ac power converter; Grid-connected inverter; Instantaneous active and reactive power generation; Renewable energy; Second-order integral sliding mode control; Sliding mode observer; Electrical and Electronic Engineering, Double-stage Ac-Ac power converter, Second-order integral sliding mode control, Sliding mode observer, Instantaneous active and reactive power generation, Grid-connected inverter, Dc-link voltage control, Boost-type PWM rectifier, Electrical and Electronic Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average