
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
EFFECT OF FUEL TYPES AND INJECTION CONDITIONS ON SPRAY FORMATION AND GAS ENTRAINMENT PROCESSES IN DIESEL ENGINE

Due to its higher oxygen content, biodiesel fuel could play a vital role in the achievement of emission control in the heavy-duty transportation sector. Waste cooking oil (WCO) obtained from various sources such as the food industry, restaurants, and sewers could provide sustainable means of producing low-carbon fuel such as biodiesel. In this research, WCO biodiesel and conventional diesel fuels were characterized fundamentally in terms of their spray and gas entrainment qualities under diesel-like engine conditions using laser-induced fluorescence and particle image velocimetry (LIF-PIV). The impact of fuel injection parameters such as injection pressure and nozzle diameter on the fuel's spray and gas entrainment characteristics were investigated. Furthermore, an empirical equation was used to determine the droplet sizes of the sprays at different injection conditions. For both fuels, spray breakup and atomization were enhanced with the droplet size decreasing as injection pressure increased from 100 to 300 MPa and as nozzle size decreased from 0.16 to 0.08 mm. As a result of higher viscosity and surface tension, it was observed that WCO biodiesel produced longer spray penetration and narrower spray angle than diesel fuel. Furthermore, the quantity of gas entrained by WCO biodiesel spray was lower. As a result of an increase in the surface area, the percentage of gas entrained at the side periphery of the spray increased as time proceeded while the percentage of gas entrained via the spray tip decreased. The combined effect of ultra-high injection pressure of 300 MPa with a smaller nozzle hole diameter of 0.08 mm was observed to enhance gas entrainment processes.
- Hiroshima University Japan
- Manchester Metropolitan University United Kingdom
- Hiroshima University Japan
- Manchester Metropolitan University United Kingdom
0904 Chemical Engineering, Mechanical Engineering & Transports, 4012 Fluid mechanics and thermal engineering, 0203 Classical Physics, 0913 Mechanical Engineering
0904 Chemical Engineering, Mechanical Engineering & Transports, 4012 Fluid mechanics and thermal engineering, 0203 Classical Physics, 0913 Mechanical Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
