
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Winter Tourism and Climate Change in the Alps: An Assessment of Resource Consumption, Snow Reliability, and Future Snowmaking Potential

The winter tourism industry is facing considerable challenges with climate change; it is increasingly responding with investments in snowmaking facilities. We present a study on 3 tourism destinations in the Swiss Alps that addressed resource consumption of snowmaking, snow reliability, and future snowmaking potential in a warmer climate. The energy consumption of snowmaking in the ski resorts was in the lower range of what could be expected from literature values. It comprised ∼0.5% of the respective municipality's energy consumption and was moderate compared with other tourism-related activities. Water consumption, however, was in the higher range with regard to what was expected from literature values and was also high compared with other water uses (eg 36% compared with drinking water consumption in one community). Natural snow cover was partly critical for winter sports at low elevations at ∼1200 masl, but uncritical at higher elevations above 2000 masl. Snow cover will become even more critical in a warmer climate but will probably still be sufficient above 2000 masl until 2050. Snowmaking may become critical at lower elevations in the early months of the season (November and December) due to warmer temperatures that can be expected in the coming decades. But, at higher elevations, the potential for snowmaking will probably remain sufficient. Our study provides straightforward and feasible approaches to assess resource consumption and snow cover. Careful consideration of resource consumption and snow cover can foster technical and economical advances as well as more sustainable development in mountains regions. Snow production can represent a valuable adaptation strategy at high-altitude destinations. However, given the increasing economic competition and the changing climate, it will be crucial to use specific regional strengths to provide high-quality winter and summer tourism activities.
Mountain Research and Development, 31 (3)
ISSN:0276-4741
ISSN:1994-7151
- Swiss Federal Institute for Forest, Snow and Landscape Research Switzerland
- ETH Zurich Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research Switzerland
Alpine ecosystems, Artificial snow; Technical snow; Snowmaking; Climate change; Ski piste; Alpine ecosystems; Sustainability; Switzerland, Snowmaking, Sustainability, Technical snow, Ski piste, Artificial snow, Climate change, Switzerland
Alpine ecosystems, Artificial snow; Technical snow; Snowmaking; Climate change; Ski piste; Alpine ecosystems; Sustainability; Switzerland, Snowmaking, Sustainability, Technical snow, Ski piste, Artificial snow, Climate change, Switzerland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).105 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
