
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Socio-technical transitions in UK electricity: part 2 – technologies and sustainability

A large interdisciplinary consortium of engineers, social scientists and policy analysts has developed three low-emissions, more-electric transition pathways for the UK. The approach is based on earlier work on understanding transitions, applying a multi-level perspective with landscape, regime and niche levels to the development of socio-technical scenarios. The pathways to 2050 focus on the power sector, including the potential for increasing the use of low-emissions electricity for heating and transport. Part 1 described studies of historical energy and infrastructure transitions that help to understand the dynamics and timing of past transitions. The role of large-scale and small-scale actors in the electricity sector and methods used to develop the pathways were also described. In part 2, associated technologies are evaluated to determine the choices that need to be made by UK energy policymakers and stakeholders. All three pathways are appraised in terms of their environmental performance using complementary life-cycle assessment and footprinting methods. Lessons can clearly be drawn for other industrialised nations attempting to reduce the emissions of their electricity generation systems, although local circumstances will determine country- and region-specific options.
- Cardiff University United Kingdom
- Imperial College London United Kingdom
- University of Bath United Kingdom
- Bath Spa University United Kingdom
- Cardiff University United Kingdom
Energy, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Climate change, Business, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action
Energy, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Climate change, Business, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
