
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting short-term electric load using extreme learning machine with improved tree seed algorithm based on Lévy flight

In recent years, forecasting has received increasing attention since it provides an important basis for the effective operation of power systems. In this paper, a hybrid method, composed of kernel principal component analysis (KPCA), tree seed algorithm based on Lévy flight (LTSA) and extreme learning machine (ELM), is proposed for short-term load forecasting. Specifically, the randomly generated weights and biases of ELM have a significant impact on the stability of prediction results. Therefore, in order to solve this problem, LTSA is utilized to obtain the optimal parameters before the prediction process is executed by ELM, which is called LTSA-ELM. Meanwhile, the input data is extracted by KPCA considering the sparseness of the electric load data and used as the input of LTSA-ELM model. The proposed method is tested on the data from European network on intelligent technologies (EUNITE) and experimental results demonstrate the superiority of the proposed approaches compared to the other methods involved in the paper.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
