Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Apollo
Thesis . 2018
Data sources: Datacite
Apollo
Doctoral thesis . 2017
Data sources: Apollo
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Additively Manufactured Metallic Cellular Materials for Blast and Impact Mitigation

Authors: Harris, Jonathan Andrew;

Additively Manufactured Metallic Cellular Materials for Blast and Impact Mitigation

Abstract

Selective laser melting (SLM) is an additive manufacturing process which enables the creation of intricate components from high performance alloys. This facilitates the design and fabrication of new cellular materials for blast and impact mitigation, where the performance is heavily influenced by geometric and material sensitivities. Design of such materials requires an understanding of the relationship between the additive manufacturing process and material properties at different length scales: from the microstructure, to geometric feature rendition, to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using additive manufacturing processes to design and optimise cellular materials for dynamic energy absorbing applications. This investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using SLM, and makes two specific contributions. First, it demonstrates how the SLM process itself influences the characteristics of these cellular materials across a range of length scales, and in turn, how this influences the dynamic deformation. Secondly, it demonstrates how an additive manufacturing route can be used to add geometric complexity to the cell architecture, creating a versatile basis for geometry optimisation. Two design spaces are explored in this work: a conventional square honeycomb hybridised with lattice walls, and an auxetic stacked-origami geometry, manufactured and tested experimentally here for the first time. It is shown that the hybrid lattice-honeycomb geometry outperformed the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (approximately 100 m/s). In this regime, the collapse is dominated by dynamic buckling effects, but wave propagation effects have yet to become pronounced. By tailoring the fold angles of the stacked origami material, numerical simulations illustrated how it can be optimised for specific impact velocity regimes between 10-150 m/s. Practical design tools were then developed based on these results.

Country
United Kingdom
Related Organizations
Keywords

Additive manufacturing, cellular materials, blast, impact engineering, dynamic buckling, honeycomb, Hopkinson bar, Kolsky bar, selective laser melting, origami, impact, energy absorption, ABAQUS, stainless steel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research