

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simultaneous Conversion of CO2 and Cellulose to Formate Using a Floating TiO2-Enzyme Photoreforming Catalyst.
doi: 10.17863/cam.95070
Formate production via both CO2 reduction and cellulose oxidation in a solar-driven process is achieved by a semiartificial biohybrid photocatalyst consisting of immobilized formate dehydrogenase on titanium dioxide (TiO2|FDH) producing up to 1.16±0.04 mmolformate gTiO2-1 in 24 hours. Isotopic labelling experiments with 13C-labelled substrates support the mechanism of stoichiometric formate formation through both redox half-reactions. TiO2|FDH was further immobilized on hollow glass microspheres to perform more practical floating photoreforming allowing vertical solar light illumination with optimal light exposure of the photocatalyst to real sunlight. Enzymatic cellulose depolymerization coupled to the floating photoreforming catalyst generates 0.36±0.04 mmolformate mirr-2 after 24 h. This work thus presents simultaneous solar-driven valorization of waste streams, demonstrates the advantages of biohybrid photocatalysts in photoreforming for the first time and will provide inspiration for the development of future semi-artificial waste-to-chemical conversion strategies.
- University of Cambridge United Kingdom
biomass, Carbon dioxide fixation, TiO2, Biohybrid Materials, photocatalysis
biomass, Carbon dioxide fixation, TiO2, Biohybrid Materials, photocatalysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 4 - 4views
Data source Views Downloads Apollo 4 0

