
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sistema híbrido para la predicción del funcionamiento de una celda de combustible basada en hidrógeno, empleada en el almacenamiento de energía
[Resumen] En la actualidad, en gran medida debido al auge del vehículo eléctrico, los sistemas de almacenamiento energético son cada vez una necesidad mayor siendo tanto las baterías eléctricas como las pilas de combustible, las dos tecnologías en mayor desarrollo en los últimos años. Sin embargo, no es suficiente sólo desarrollar sistemas de almacenamiento de energía, sino que es indispensable maximizar la eficiencia de los mismos, para garantizar el máximo aprovechamiento de la energía almacenada. Para alcanzar dicho objetivo, uno de los aspectos más relevantes es el poder predecir con suficiente exactitud y antelación tanto la generación como el consumo energético que se haría sobre el dispositivo de almacenamiento. Es por ello, que la presente investigación se centra en el desarrollo de un sistema híbrido de modelado de una celda de combustible mediante técnicas de aprendizaje no supervisado para agrupamientos, combinadas con técnicas de regresión para modelado. Finalmente, los modelos generados con conjunto de datos real proveniente de un sistema de generación y almacenamiento de energía mediante una celda de hidrógeno, son validados obteniendo resultados altamente satisfactorios. [Abstract] Currently, largely due to the rise of the electric vehicle, energy storage systems are becoming agreater need, being both electric batteries and fuel cells, the two most developed technologies in recent years. However, it is not enough just to develop energy storage system, but it is essential to maximize the efficiency of them, in order to take the maximum advantage of the stored energy. To reach this goal, one of the most relevant aspects is to predict with enough accuracy and in advance both the generation and consumption of energy that will be made on the storage device. For this reason, the present research focuses on the development of a hybrid system for modeling a fuel cell using unsupervised learning techniques for clustering combined with regression techniques for modeling. Finally, the models generated on a real dataset, coming from an experimental real generation and storage system of energy by means of a hydrogen cell, are validated obtaining highly satisfactory results.
- University of Leon Spain
- University of Leon Spain
- University of Córdoba Spain
3322.02 Generación de Energía, Energy storage, Almacenamiento de energía, Energía, SVM, Fuel cell, BHL, 3306 Ingeniería y Tecnología Eléctricas, Pila de hidrógeno, ANN
3322.02 Generación de Energía, Energy storage, Almacenamiento de energía, Energía, SVM, Fuel cell, BHL, 3306 Ingeniería y Tecnología Eléctricas, Pila de hidrógeno, ANN
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
