Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ILC Marx Modulator Development Program Status

Authors: Burkhart, Craig; Benwell, Andrew; Beukers, Tony; Kemp, Mark; Larsen, Raymond; MacNair, David; Nguyen, Minh; +2 Authors

ILC Marx Modulator Development Program Status

Abstract

A Marx-topology klystron modulator is under development for the International Linear Collider (ILC) project*. It is envisioned as a lower cost, smaller footprint, and higher reliability alternative to the present, bouncer-topology, baseline design. The application requires 120 kV (±0.5%), 140 A, 1.6 ms pulses at a rate of 5 Hz. The Marx constructs the high voltage pulse by combining, in series, a number of lower voltage cells. The Marx employs solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. Active compensation of the output is used to achieve the voltage regulation while minimizing the stored energy. The developmental testing of a first generation prototype, P1, has been completed. This modulator has been integrated into a test stand with a 10 MW L-band klystron, where each is undergoing life testing. Development of a second generation prototype, P2, is underway. The P2 is based on the P1 topology but incorporates an alternative cell configuration to increase redundancy and improve availability. Status updates for both prototypes are presented.

Proceedings of the 1st International Particle Accelerator Conference, IPAC2010, Kyoto, Japan

Country
United States
Related Organizations
Keywords

43 Particle Accelerators, T16 Pulsed Power Technology, Design, Testing, Linear Colliders, Availability, Reliability, Accelerators,Eng, Accelerator Physics, Redundancy, Stored Energy, Klystrons, 07 Accelerator Technology, Topology Accelerators,Eng, Configuration, Regulations, Accelerators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research