
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A New Scheme for Electro-optic Sampling at Record Repetition Rates : Principle and Application to the First (turn-by-turn) Recordings of THz CSR Bursts at SOLEIL
The microbunching instability is an ubiquitous problem in storage rings at high current density. However, the involved fast time-scales hampered the possibility to make direct real-time recordings of theses structures. When the structures occur at a cm scale, recent works at UVSOR*, revealed that direct recording of the CSR electric field with ultra-high speed electronics (17 ps) provides extremely precious informations on the microbunching dynamics. However, when CSR occurs at THz frequencies (and is thus out of reach of electronics), the problem remained largely open. Here we present a new opto-electronic strategy that enabled to record series of successive electric field pulses shapes with picosecond resolution (including carrier and envelope), every 12 ns, over a total duration of several milliseconds. We also present the first experimental results obtained with this method at Synchrotron SOLEIL, above the microbunching instability threshold, and we present direct tests of Vlasov-Fokker-Planck and macroparticle models. The method can be applied to the detection of ps electric fields in other situations where high repetition rate is also an issue.
Proceedings of the 5th Int. Particle Accelerator Conf., IPAC2014, Dresden, Germany
- UNIVERSITE LILLE 1 France
- University of Lille France
05 Beam Dynamics and Electromagnetic Fields, D05 Instabilities - Processes, Impedances, Countermeasures, Accelerator Physics
05 Beam Dynamics and Electromagnetic Fields, D05 Instabilities - Processes, Impedances, Countermeasures, Accelerator Physics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
