Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mires and Peatarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mires and Peat
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High N2O and CO2 emissions from bare peat dams reduce the climate mitigation potential of bog rewetting practices

Authors: H. van Asperen; Lars Kutzbach; Olga Vybornova; Eva-Maria Pfeiffer;

High N2O and CO2 emissions from bare peat dams reduce the climate mitigation potential of bog rewetting practices

Abstract

The rewetting of drained peatlands is currently a common practice for re-establishing near-natural hydrological conditions and for reducing peatland greenhouse gas (GHG) emissions, especially of carbon dioxide (CO2) and nitrous oxide (N2O), which are enhanced under peatland drainage and extraction. In the originally bare and drained peatland Himmelmoor (Quickborn, Germany), the rewetting process started stepwise in 2004 by blocking drainage ditches with peat as well as by creating polders surrounded by peat dams. In this research we examined differences in CO2, methane (CH4) and N2O emissions between a flooded (FL) area, a bare peat dam (PD) area and an abandoned (but still drained) extraction (E) area during a period in 2012 and during a period of two years in 2014–2016. The results showed that all study areas were GHG sources, although large differences were identified between the different sites. Winter CO2 emissions from all sites (FL, PD, E) were within the range previously reported for rewetted peatlands, but summer CO2 emissions from PD (1–20 µmol m-2 s-1) strongly exceeded the reported average range for similar surfaces. Very low and irregular CH4 fluxes were detected at both PD and FL, ranging from -6 to 24 nmol m-2 s-1 at PD and from 13 to 49 nmol m-2 s-1 at FL. In comparison to other peatlands, the observed N2O emissions were high, especially at the PD sites with maximum daily means of 23 nmol m-2 s-1 in the summer of 2012. In general, the flooded excavation sites (FL) showed lower GHG emissions than the not-rewetted excavation area (E). Also, despite the relatively small coverage of the peat dams (PD), these areas showed a larger total GHG emission than the E and FL sites. This negative effect of peat dams during the first years after flooding could be mitigated by stimulating their colonisation by moss or heath vegetation, which reduces the soil N pool and thus can be expected to reduce N2O fluxes from the peat dams.

Keywords

restoration, Ecology, greenhouse gas emissions, ombrotrophic mire, peatland, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold