
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental Studies of Turbulence Intensity around a Tidal Turbine Support Structure

Experimental Studies of Turbulence Intensity around a Tidal Turbine Support Structure
Tidal stream energy is a low carbon energy source. Tidal stream turbines operate in a turbulent environment, and the effect of the structure between the turbine and seabed on this environment is not fully understood. An experimental study using 1:72 scale models based on a commercial turbine design was carried out to study the support structure influence on turbulence intensity around turbine blades. The study was conducted using the wave-current tank at LABIMA, University of Florence. A realistic flow environment (ambient turbulent intensity = 11%) was established. Turbulence intensity was measured upstream and downstream of a turbine mounted on two different support structures (one resembling a commercial design, the other the same with an additional vertical element), in order to quantify any variation in turbulence and performance between the support structures. Turbine drive power was used to calculate power generation. Acoustic Doppler Velocimetry was used to record and calculate upstream and downstream turbulence intensity. In otherwise identical conditions, performance variation of only 4% was observed between two support structures. Turbulent intensity at 1, 3 and 5 blade diameters, both upstream and downstream, showed variation up to 21% between the two cases. The additional turbulent structures generated by the additional element of the second support structure appears to cause this effect, and the upstream propagation of turbulent intensity is believed to be permitted by surface waves. This result is significant for the prediction of turbine array performance.
- University of Florence Italy
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- University of Sheffield United Kingdom
- University of Derby United Kingdom
- University of Derby United Kingdom
690, Technology, T, turbulence, ocean current turbine, device wake, 532, Turbulence, Support structure, Tidal energy, Marine energy, Tidal turbine, marine energy, tidal turbine, horizontal-axis marine current turbine, energy_fuel_technology, support structure
690, Technology, T, turbulence, ocean current turbine, device wake, 532, Turbulence, Support structure, Tidal energy, Marine energy, Tidal turbine, marine energy, tidal turbine, horizontal-axis marine current turbine, energy_fuel_technology, support structure
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
