
Found an issue? Give us feedback
https://doi.org/10.20944/prepr...
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
Journal of Physics : Conference Series
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
Archivio della ricerca - Università degli studi di Napoli Federico II
Conference object . 2020
Archivio della ricerca - Università degli studi di Napoli Federico II
Conference object . 2020
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Thermal Efficiency of a Concentrating Solar Collector Under High-Vacuum

De Maio D; Alessandro; C D; De Luca D; Musto M; Di Gennaro E; Rotondo G; Russo; R;
Abstract
A new frontier in solar thermal panel technology can be a high vacuum collector, thick enough to be equipped with solar concentrators based on non-imaging optics, such as the Compound Parabolic Concentrators (CPC). The high vacuum technology guarantees higher operating temperatures thanks to the enhanced thermal insulation, which leads to pay particular attention to the absorber radiative emission. In this paper by means of numerical simulations we compare the efficiency of a flat selective solar absorber under high vacuum to the efficiency of a CPC under high-vacuum collector.
Country
Italy
Related Organizations
Keywords
energy conversion efficiency, solar energy, energy_fuel_technology
energy conversion efficiency, solar energy, energy_fuel_technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
4
Top 10%
Average
Average
Green
gold
Beta
Fields of Science
Related to Research communities
Energy Research