
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced Through Co-Electrolysis of CO<sub>2</sub> and H<sub>2</sub>O at Intermediate Temperatures

The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced Through Co-Electrolysis of CO<sub>2</sub> and H<sub>2</sub>O at Intermediate Temperatures
The co-electrolysis of CO2 and H2O at intermediate temperature is a viable approach for the power-to-gas conversion that deserves for further investigation, considering the need for green energy storage. The commercial solid oxide electrolyser is a promising device, but it is still facing to solve issues concerning the high operating temperatures and the improvement of gas value. In this paper we reported the recent findings of a simple approach that we have amply suggested for solid oxide cells consisting in the addition of a functional layer coated to the fuel electrode of commercial electrochemical cells. This approach simplifies the transition to the next generation of cells manufactured with the most promising materials currently developed and improves the gas value in the outlet stream of cell. Here, the material in use as a coating layer consisted of a Ni-modified La0.6Sr0.4Fe0.8Co0.2O3 which was developed and demonstrated as promising fuel electrode for solid oxide fuel cells. The results discussed in this paper proved the positive role of Ni-modified perovskite as a coating layer for the cathode, since an improvement of about twice was obtained about the quality of gas produced.
green methane, power-to-gas, energy storage, Chemical technology, TP1-1185, valorisation of CO2, Chemistry, valorisation of CO<sub>2</sub>, solid oxide electrochemical cells, QD1-999, automotive_engineering
green methane, power-to-gas, energy storage, Chemical technology, TP1-1185, valorisation of CO2, Chemistry, valorisation of CO<sub>2</sub>, solid oxide electrochemical cells, QD1-999, automotive_engineering
1 Research products, page 1 of 1
- 2003IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
