

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation

Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation
The digital era offers many opportunities to the wind energy industry and research community. Digitalisation is one of the key drivers for reducing costs and risks over the whole wind energy project life cycle. One of the largest challenges in successfully implementing digitalisation is the lack of data sharing and collaboration between organisations in the sector. In order to overcome this challenge, a new collaboration method called WeDoWind was developed in recent work. The main innovation of this method is the way it creates tangible incentives to motivate and empower different types of people from all over the world to actually share data and knowledge in practice. In this present paper, the challenges related to comparing and evaluating different SCADA data based wind turbine fault detection models are investigated by carrying out a new case study, the "WinJi Gearbox Fault Detection Challenge", based on the WeDoWind Method. Six new solutions were submitted to the challenge, and a comparison and evaluation of the results show that, in general, some of the approaches (Particle Swarm Optimisation algorithm for constructing health indicators, performance monitoring using Deep Neural Networks, Combined Ward Hierarchical Clustering and Novelty Detection with Local Outlier Factor and Time-to-failure prediction using Random Forest Regression) appear to have a high potential to reach the goals of the Challenge. However, there are a number of concrete things that would have to have been done by the Challenge providers and the Challenge moderators in order to ensure success. This includes enabling access to more details of the different failure types, access to multiple data sets from more wind turbines experiencing gearbox failure, provision of a model or rule relating fault detection times or a remaining useful lifetime to the estimated costs for repairs, replacements and inspections, provision of a clear strategy for training and test periods in advance, as well as provision of a pre-defined template or requirements for the results. These learning outcomes are used directly to define a set of best practice data sharing guidelines for wind turbine fault detection model evaluation. They can be used by the sector in order to improve model evaluation and data sharing in the future.
- Mondragon University Spain
- Ostschweizer Fachhochschule OST Switzerland
- Ikerbasque Spain
- Mondragon University Spain
- Delft University of Technology Netherlands
690, model evaluation, Technology, machine learning, wind energy; data sharing; best practice; machine learning; model evaluation, data sharing, T, best practice, wind energy, energy_fuel_technology
690, model evaluation, Technology, machine learning, wind energy; data sharing; best practice; machine learning; model evaluation, data sharing, T, best practice, wind energy, energy_fuel_technology
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 9 download downloads 10 - 9views10downloads
Data source Views Downloads TU Delft Repository 9 10


