Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Buildings
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Buildings
Article . 2023
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Quantitative Poisitive Energy District Definition with Contextual Targets

Authors: Simon Schneider; Thomas Zelger; David Sengl; José Baptista;

A Quantitative Poisitive Energy District Definition with Contextual Targets

Abstract

This paper presents the goals and components of a quantitative energy balance assessment framework to define PEDs flexibly in three important contexts: the context of the district's density and RES potential, the context of a district's location, induced mobility and the context of the dis-trict's future environment and its decarbonized energy demand or supply. It starts by introducing the practical goals of this definition approach: achievable, yet sufficiently ambitious to be inline with Paris 2050 for most urban and rural Austrian district typologies. It goes on to identify the main design parts of the definition: system boundaries, balancing weights and balance targets and argue how they can be linked to the definition goals in detail. In particular we specify three levels of system boundaries and argue their individual necessity: operation, including everyday mobili-ty, including embodied energy and emissions. It argues that all three pillars of PEDs, energy effi-ciency, onsite renewables and energy flexibility can be assessed with the single metric of a prima-ry energy balance when using carefully designed, time-dependent conversion factors. Finally, it is discussed how balance targets can be interpreted as information and requirements from the sur-rounding energy system, which we identify as a "context factor". Three examples of such context factors, each corresponding to the balance target of one of the previously defined system bounda-ries operation, mobility and embodied emissions are presented: Density (as a context of opera-tion), sectoral energy balances and location (as a context for mobility) and an outlook of a person-al emission budgets (as a context for embodied emissions). Finally, the proposed definition framework is applied to seven distinct district typologies in Austria and discussed in terms of its design goals.

Keywords

context factors, Building construction, energy transition, PED assessment, Positive Energy District, Positive Energy District; PED definition; context factors; PED assessment; energy transition; energy balance assessment; sustainable districts; key performance indicators, PED definition, TH1-9745, energy balance assessment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold