
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Quantitative Poisitive Energy District Definition with Contextual Targets

A Quantitative Poisitive Energy District Definition with Contextual Targets
This paper presents the goals and components of a quantitative energy balance assessment framework to define PEDs flexibly in three important contexts: the context of the district's density and RES potential, the context of a district's location, induced mobility and the context of the dis-trict's future environment and its decarbonized energy demand or supply. It starts by introducing the practical goals of this definition approach: achievable, yet sufficiently ambitious to be inline with Paris 2050 for most urban and rural Austrian district typologies. It goes on to identify the main design parts of the definition: system boundaries, balancing weights and balance targets and argue how they can be linked to the definition goals in detail. In particular we specify three levels of system boundaries and argue their individual necessity: operation, including everyday mobili-ty, including embodied energy and emissions. It argues that all three pillars of PEDs, energy effi-ciency, onsite renewables and energy flexibility can be assessed with the single metric of a prima-ry energy balance when using carefully designed, time-dependent conversion factors. Finally, it is discussed how balance targets can be interpreted as information and requirements from the sur-rounding energy system, which we identify as a "context factor". Three examples of such context factors, each corresponding to the balance target of one of the previously defined system bounda-ries operation, mobility and embodied emissions are presented: Density (as a context of opera-tion), sectoral energy balances and location (as a context for mobility) and an outlook of a person-al emission budgets (as a context for embodied emissions). Finally, the proposed definition framework is applied to seven distinct district typologies in Austria and discussed in terms of its design goals.
- University of Applied Sciences Technikum Wien Austria
- TU Wien Austria
- TU Wien Austria
- University of Trás-os-Montes and Alto Douro Portugal
- University of Applied Sciences Technikum Wien Austria
context factors, Building construction, energy transition, PED assessment, Positive Energy District, Positive Energy District; PED definition; context factors; PED assessment; energy transition; energy balance assessment; sustainable districts; key performance indicators, PED definition, TH1-9745, energy balance assessment
context factors, Building construction, energy transition, PED assessment, Positive Energy District, Positive Energy District; PED definition; context factors; PED assessment; energy transition; energy balance assessment; sustainable districts; key performance indicators, PED definition, TH1-9745, energy balance assessment
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
