
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring Ln(III) Ion-Based Luminescent Species as Down-Shifters for Photovoltaic Solar Cells

Exploring Ln(III) Ion-Based Luminescent Species as Down-Shifters for Photovoltaic Solar Cells
In this work, we compiled our research on lanthanide-based luminescent materials, prepared down-shifter layers, and studied their effect on photovoltaic (PV) mini-modules. The compounds we have prepared (C1-C17), with formulas [Eu2(phen)2(bz)6] (C1), [Eu2(bphen)2(bz)6] (C2), [Eu(tta)3bphen] (C3), [Eu(bta)3pyz-phen] (C4), [Eu(tta)3pyz-phen] (C5), [Eu(bta)3me-phen] (C6), [Er(bta)3me-phen] (C7), [Yb(bta)3me-phen] (C8), [Gd(bta)3me-phen] (C9), [Yb(bta)3pyz-phen] (C10), [Er(tta)3pyz-phen] (C11), [Eu2(bz)4(tta)2(phen)2] (C12), [Gd2(bz)4(tta)2(phen)2] (C13), [EuTb(bz)4(tta)2(phen)2] (C14), [EuGd(bz)4(tta)2(phen)2] (C15), [Eu1.2Gd0.8(bz)4(tta)2(phen)2] (C16) and [Eu1.6Gd0.4(bz)4(tta)2(phen)2] (C17), can be grouped into three families based on their composition: Series C1–6 were synthesized using Eu3+ ions and phenanthroline derivatives as the neutral ligands, and fluorinated β-diketonates as the anionic ligands. Complexes C7–11 were prepared with ligands similar to those of compounds C1–6 but were synthesized with Er3+, Yb3+, or Gd3+ ions. Series C12–17 exhibit the general formula [M1M2(bz)4(tta)2(phen)2], where M1 and M2 can be Eu3+, Gd3+, or Tb3+ ions, and the ligands are benzoate (bz–), 2-thenoyltrifluoroacetone (tta–) and 1,10–phenanthroline (phen). All compounds were characterized using X-ray techniques, and their photoluminescent properties were studied. We then examined their impact on the EQE (External Quantum Efficiency) of PV mini-modules and their durability in a climate chamber when embedded in PMMA and EVA films. This review emphasizes the methodology employed and the key findings, including enhanced mini-module efficiency. Additionally, we present promising results on the application of compound C6 in a bifacial solar cell.
- University of La Laguna Spain
- University of La Laguna Spain
lanthanide ions, Technology, Microscopy, QC120-168.85, T, QH201-278.5, solar energy, down-shifting, Engineering (General). Civil engineering (General), Article, TK1-9971, external quantum efficiency, Descriptive and experimental mechanics, luminescent; down-shifting; solar energy; external quantum efficiency; lanthanide ions, Electrical engineering. Electronics. Nuclear engineering, TA1-2040, luminescent
lanthanide ions, Technology, Microscopy, QC120-168.85, T, QH201-278.5, solar energy, down-shifting, Engineering (General). Civil engineering (General), Article, TK1-9971, external quantum efficiency, Descriptive and experimental mechanics, luminescent; down-shifting; solar energy; external quantum efficiency; lanthanide ions, Electrical engineering. Electronics. Nuclear engineering, TA1-2040, luminescent
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
