
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards BIM-based Sustainable Structural Design Optimization: A Systematic Review and Industry Perspective


Muhammad Afzal

Rita Yi Man Li

Muhammad Shoaib
Structural design optimization (SDO) plays a pivotal role in enhancing various aspects of construction projects, including design quality, cost-efficiency, safety, and structural reliability. Recent endeavors in academia and industry have sought to harness the potential of Building Information Modeling (BIM) and optimization algorithms to optimize SDO and improve design outcomes. This review paper aims to synthesize these efforts, shedding light on how SDO contributes to project coordination. Furthermore, the integration of sustainability considerations and the application of innovative technologies and optimization algorithms in SDO necessitate more interactive early-stage collaboration among project stakeholders. This study offers a comprehensive exploration of contemporary research in integrated SDO employing BIM and optimization algorithms. It commences with an exploratory investigation, employing both qualitative and quantitative analysis techniques following the PRISMA systematic review methodology. Subsequently, an open-ended opinion survey was conducted among construction industry professionals in Europe. This survey yields valuable insights into the coordination challenges and potential solutions arising from technological shifts and interoperability concerns associated with widespread SDO implementation. These preliminary steps of systematic review and industry survey furnish a robust knowledge foundation, enabling the proposal of an intelligent framework for automating early-stage sustainable structural design optimization (ESSDO) within the construction sector. The framework ESSDO addresses the challenges of fragmented collaboration between architects and structural engineers. This proposed framework seamlessly integrates with the BIM platform, i.e., Autodesk Revit for architects. It extracts crucial architectural data and transfers it to the structural design and analysis platform, i.e., Autodesk Robot Structural Analysis (RSA), for structural engineers via the visual programming tool Dynamo. Once the optimization occurs, optimal outcomes are visualized within BIM environments. This visualization elevates interactive collaborations between architects and engineers, facilitating automation throughout the workflow and smoother information exchange.
- Alma Mater Studiorum University of Bologna Italy
- National University of Sciences and Technology Pakistan
- Hong Kong Shue Yan University China (People's Republic of)
- Polytechnic University of Milan Italy
- National University of Science and Technology Zimbabwe
Environmental effects of industries and plants, TJ807-830, interoperability, TD194-195, Renewable energy sources, Environmental sciences, building information modeling (BIM), structural design optimization (SDO), generative design, design automation, GE1-350, automated structural design
Environmental effects of industries and plants, TJ807-830, interoperability, TD194-195, Renewable energy sources, Environmental sciences, building information modeling (BIM), structural design optimization (SDO), generative design, design automation, GE1-350, automated structural design
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
