
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Residue Addition Can Mitigate Soil Health Challenges with Climate Change in Drylands: Insights from a Field Warming Experiment in Semi-arid Texas

Texas cotton production is facing challenges arising from increased temperatures and extended droughts. One potential solution to mitigate these environmental stresses lies in enhancing soil health through measures aimed at increasing soil organic matter and microbial biomass. Our field study investigated the effectiveness of adding residue on soil surface to increase soil organic matter content, microbial biomass, and cotton production under experimental warming with open-top chambers (OTCs). The OTCs raised the air temperature by 2 °C but did not affect soil temperature. OTCs also increased microbial biomass and soil respiration rate. Residue addition increased moisture content in non-irrigated (i.e., dryland) soils under experimental warming and concurrently reduced the daily temperature range in warmed plots. Furthermore, residue addition increased microbial biomass and soil respiration, particularly under OTC treatments in dryland soils. We also observed increased soil organic matter, microbial biomass, cotton biomass, and yield in irrigated fields compared to dryland. Our findings suggest that residue retention can mitigate the adverse effects of warming by stabilizing soil microclimate and enhancing soil organic matter and microbial biomass levels, especially in drylands. This, in turn, can help attenuate the potential impacts of future climate change on soil health and crop production in semiarid environments.
- The University of Texas System United States
Physical geography, Chemistry, climate change, microbial biomass, soil warming, soil carbon, soil management, QD1-999, open-top chambers, GB3-5030
Physical geography, Chemistry, climate change, microbial biomass, soil warming, soil carbon, soil management, QD1-999, open-top chambers, GB3-5030
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
