Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal Analysis of Radiation Heat Transfer of an Improved Fractal Solar Collectors

Authors: Adylkhan Kibishov; Gulenay Alevay Kilic; Nassim Rustamov; Naci Genc;

Thermal Analysis of Radiation Heat Transfer of an Improved Fractal Solar Collectors

Abstract

This study proposes parabolic dish-based toroidal structured fractal solar collectors. The potential of fractal geometry to increase heat transfer and the ability of the parabolic dish to concentrate solar rays form the basis of the proposed design for increasing the efficiency. In the study, the thermal and hydrodynamic behaviors of the proposed 3-row, 4-row and 5-row parabolic collectors were investigated comprehensively. Using theoretical modeling and experimental results, the performances of the proposed parabolic dish-based toroidal fractal solar collectors were evaluated and compared via numerical simulation methods. After the experimental studies of the 3-row toroidal fractal collector, the analysis studies were completed using the ANSYS-Fluent program. Then, simulations were carried out for other toroidal solar collectors using the results of these experimental studies. As a result of the converging numerical analyzes, the radiative, hydrodynamic and thermal analysis results of the toroidal absorbers in 3-row, 4-row and 5-row structures integrated with the parabolic dish were compared. In the temperature distribution analysis, it was observed that the parabolic dish effectively focuses on the sun rays and provides a gradual temperature increase of approximately 21 K for the fractal collector. It is observed that 96.84% convergence was achieved between the experimental and numerical results.

Related Organizations
Keywords

Technology, QH301-705.5, T, Physics, QC1-999, solar energy, Engineering (General). Civil engineering (General), fractal solar collector, renewable energy, Chemistry, heat transfer, TA1-2040, Biology (General), QD1-999, thermal analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research