Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.20944/prepr...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surviving in a Warmer Marine World…A Study on the Impact of a Thermal Effluent on Posidonia oceanica Meadows and Associated Fish Assemblages in the Maltese Islands

Authors: Alessio Marrone; Alessandro Rinaldi; Valeria Montalto; Adam Gauci; Francesca Ape; Henri Ringeard; Marco Spoto; +4 Authors

Surviving in a Warmer Marine World…A Study on the Impact of a Thermal Effluent on Posidonia oceanica Meadows and Associated Fish Assemblages in the Maltese Islands

Abstract

Rising sea temperatures, driven by climate change, pose significant threats to coastal ecosystems. This study investigates the impact of thermal effluents from power plants, as proxies for climate-driven temperature increases, on Posidonia oceanica meadows and associated fish communities. Using a gradient-based approach, we analyzed environmental variables, seagrass indicators, fish assemblages, and functional group (FG) dynamics across a thermal gradient extending from the effluent outfall itself. Results indicate that temperature is the dominant factor influencing P. oceanica, with reduced leaf length, shoot density, and rhizome weight characterising samples closest to the effluent. Despite compensatory mechanisms, the overall photosynthetic biomass and resilience declined under thermal stress. Fish assemblages exhibited reduced species richness and biodiversity close to the thermal effluent, with opportunistic and thermophilic species dominating. FG analysis revealed disrupted seasonal patterns, shifts in trophic dynamics, and functional compensation among species, highlighting potential ecological imbalances. Notably, transient predators thrived near the effluent, while more sedentary and temperate species were displaced. These findings underscore the cascading effects of rising temperatures on coastal habitats such as P. oceanica meadows and on their associated communities, emphasizing the urgency for conservation measures. By identifying critical thresholds and adaptive responses, this study contributes valuable insights into the consequences of localized impacts of thermal stress on coastal biodiversity and ecosystem services.

Country
Italy
Keywords

thermal pollution, climate change, seagrass, Naval architecture. Shipbuilding. Marine engineering, VM1-989, GC1-1581, functional ecology, Oceanography, fish community

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Energy Research