Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nabiye Cold Lake Expansion - Leveraging Technology to Create Success

Authors: Sylvia Ruoh Mei Kueh; Larry Mark Dittaro; George R. Scott; Yueming Liang; Heather Fawcett; Sheng-Yuan Hsu;

Nabiye Cold Lake Expansion - Leveraging Technology to Create Success

Abstract

Abstract The Cold Lake development, located in Alberta, Canada, is the world’s largest heavy oil in situ thermal development. At Cold Lake, operated by Imperial Oil Resources, an ExxonMobil affiliate, the Cyclic Steam Stimulation (CSS) process is used to produce 23,500 m3/d (150 kB/d) of heavy oil. In 2009, Cold Lake produced its one billionth barrel (160 million m3) of heavy oil. The Nabiye project will be the fifth central steam generation and fluid processing hub added at Cold Lake. Nabiye (Dené for Otter) continues the historical Cold Lake development concept of maximizing value through the utilization of a phased development strategy. Relative to current operations, the key reservoir difference at Nabiye is reduced pay thickness. Averaging 12 meters (40 feet), Nabiye pay is about half as thick as the initial pads of the previous expansion (Mahkeses). While reservoir of similar thickness as Nabiye is currently being developed as Productivity Maintenance pads to sustain production in the existing operation, the risk profile for Nabiye is higher because new plant investment is required. As Cold Lake develops more challenging subsurface environments, more advanced reservoir engineering techniques must be employed to mitigate risk. This paper describes the extensive use of both thermal simulation and wellbore integrity modeling to complement analog performance prediction techniques. This paper will demonstrate how the Nabiye project is effectively commercializing an unconventional resource by integrating analog performance data and advanced reservoir and geomechanical modeling. The application of (1) thermal simulation for performance prediction and (2) geomechanical modeling for steam strategy optimization will be presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average