Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Practical Approach for Scale-Up of Solvent Transport Mechanisms in Post-CHOPS EOR Applications

Authors: J. J. Martinez-Gamboa; Juliana Y. Leung; M.. Wang;

A Practical Approach for Scale-Up of Solvent Transport Mechanisms in Post-CHOPS EOR Applications

Abstract

Abstract Cold Heavy Oil Production with Sand (CHOPS) is widely used as a primary non-thermal production technique in thin heavy oil reservoirs in Western Canada and the Orinoco Heavy Oil Belt in Venezuela. Several solvent and hybrid steam/solvent schemes have been proposed to increase the recovery factor from these deposits. Development of the complex wormhole networks renders the scalability of these processes from laboratory measurements to field applications challenging. In this paper, numerical simulation is used to analyze how scaling of solvent transport and dispersion would vary with developed wormhole characteristics. It proposes a practical workflow to a scale up these mechanisms for field-scale simulation. First, a series of mechanistic compositional simulation models at the lab scale is constructed to model a cyclic solvent injection scheme (CSI). These models are calibrated against experimental measurements of solvent diffusion measured in porous media. Next, a set of detailed high-resolution (fine-scale) simulation models, where both matrix and high-permeability wormholes (modeled as fractal networks) are represented explicitly in the computational domain, is constructed to model how the solvent propagates away from the wormholes and into the bypassed matrix. Flows of solvent and oil in the matrix and wormholes are directly simulated. Following this, a dual-permeability approach is adopted to facilitate the scale-up analysis, where wormhole intensity is correlated to shape factor and apparent dispersivity. Characteristics at different averaging scales (i.e. scale-up level) are examined. Field-scale simulation are constructed using average petrophysical and fluid properties extracted from several CHOPS reservoirs in Saskatchewan, which are, to some extent, similar to those found in the Orinoco Belt. The initial conditions in terms of fluid saturations, pressure distribution and wormhole development are representative of those commonly encountered at the end of CHOPS. Solvent transport and mixing in the wormhole networks can be captured by parameters such as shape factor and apparent dispersivity in an equivalent coarse-scale dual-permeability system. Effective dispersivity increases with averaging scale and wormhole intensity. Considering identical surface solvent injection rate, effective dispersivity would enhance oil production and reduce gas production due to an increase in mixing between solvent and oil. Several solvent injection blends are evaluated to maximize recovery efficiency. Field-scale simulations are typically performed with grid block sizes that are much larger than the wormhole scale, and numerical analysis is often performed by arbitrary adjustment of dispersivity. This work offers a practical way to scale up solvent transport mechanisms in post-CHOPS applications. It facilitates more efficient and accurate assessment of solvent transport from lab measurements to field applications. This work serves as a starting point for formulating a systematic workflow to simulate solvent processes in wormhole networks that span over multiple scales.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average