Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Simulation of Dielectric Heating in a Heavy Oil Reservoir Using a Shaped Dipole Antenna

Authors: Dunlavey James; Gunther H. Dieckmann; Pedro Vaca; Michal Okoniewski; Damir Pasalic; Cesar Ovalles;

Numerical Simulation of Dielectric Heating in a Heavy Oil Reservoir Using a Shaped Dipole Antenna

Abstract

Abstract The numerical evaluation of dielectric heating in a heavy oil containing sand is presented using a shaped dipole antenna under static (no oil production) and dynamic (with oil production) conditions. The electromagnetic simulator AxREMS™ was coupled to the commercial reservoir simulator STARS™ to model RF heating using three different shaped antenna designs (Straight dipole, Concave, and Convex design). The static simulations showed that the Concave design offers more uniform radiation pattern and temperature profile than the Straight and Convex counterparts. A conceptual model with seven sands (over- and under-burden and five oil-containing sands) was utilized for the dynamic simulation of downhole RF dielectric heating. The results indicated that all the RF heating cases had accelerated oil production than that found for the Base Case (cold production). Modeling shows that peak production is increased if RF heating is initiated before the start of production. However, all cases studied converged to approximately equal cumulative incremental oil above the Base Case, after about 700 days after the initiation of RF heating.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average