Powered by OpenAIRE graph
Found an issue? Give us feedback
SPE Journalarrow_drop_down
SPE Journal
Article . 2007 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.2523/97552-...
Conference object . 2005 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.2118/97552-...
Conference object . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carbon Dioxide Foam Rheology in Porous Media: A CT Scan Study

Authors: Pacelli L.J. Zitha; Dongxing Du; Matthijs Uijttenhout;

Carbon Dioxide Foam Rheology in Porous Media: A CT Scan Study

Abstract

Summary Carbon dioxide (CO2) foam has been widely studied in connection with its application in enhanced oil recovery (EOR). This paper reports an experimental study concerning CO2 foam propagation in a surfactant-saturated Bentheim sandstone core and the subsequent liquid injection with the aid of X-ray computed tomography (CT). The experiments were carried out under various system backpressures. It is found that CO2 foam flows in a characteristic front-like manner in the transient stage and that the water saturation keeps at relatively high level at the outlet of the porous media because of CO2 solubility and capillary end effect. The subsequent surfactant solution injection shows a significant fingering behavior, accompanied by a low flow resistance over the core. It is also found that CO2 foam flow shows higher liquid saturation near the outlet and lower pressure drops under higher system backpressures. This can be attributed to the solubility of CO2 in the liquid phase. The results indicate the advantage of using foam in EOR processes such as water alternating foam (WAF), in which foam flow has higher sweep efficiency and stronger mobility control ability compared, for instance, to water alternating gas (WAG). Nevertheless, care should be taken during the water-injection stage in order not to favor the fingering.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%