Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Earth Sciences
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.60692/pk...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/2v...
Other literature type . 2023
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Groundwater resources management using Hydrodynamic modelling in southeastern Moroccan oases: case of Ferkla Oasis

إدارة موارد المياه الجوفية باستخدام النمذجة الهيدروديناميكية في الواحات المغربية الجنوبية الشرقية: حالة واحة الفركلة
Authors: Badre Messaoudi; Lahcen Kabiri; Ismail Ait Lahssaine; Badre Essafraoui; Lamya Ouali; Brahim Ait Es Said; Mohamed El Ouali; +2 Authors

Groundwater resources management using Hydrodynamic modelling in southeastern Moroccan oases: case of Ferkla Oasis

Abstract

Abstract The Ferkla Oasis is situated in the Rheris watershed in the southeast of Morocco, between the eastern Anti-Atlas in the south (Ougnat inlier) and the Central High Atlas in the north. This oasis is characterized by a semi-desert climate with strong continental influence, marked by low and irregular rainfall as well as high temperatures. This oasis has experienced several agricultural extensions outside the traditional oasis, resulting in overpressure on the groundwater as evidenced by the dramatic decline of its piezometric level, which has engendered an ecological and socio-economic crisis. In these critical conditions, a groundwater flow model was developed to evaluate the impact of climate change and anthropogenic activities on the hydrodynamic behavior of the aquifer. The results obtained confirmed that the region is increasingly threatened by groundwater resource scarcity. Indeed, simulations of the watershed in both a permanent and transient state were generated for the years of 1993 through 2021. These simulations have shown a piezometric level decline, as well as a deficit in the water balance, as well as a deficit in the water balance. This situation is caused by climate effects, particularly frequent droughts, and the overexploitation of the groundwater resources, especially in the agricultural extension areas outside the traditional oasis. The study demonstrates that the oasis faces a serious crisis and may further deteriorate until it disappears within a few years. Therefore, integrated, collective and participatory measures are recommended. The model provides important results that will aid in groundwater resource management in this region.

Related Organizations
Keywords

Water scarcity, Oceanography, Environmental science, Agricultural and Biological Sciences, Evolution of Water Technologies in Ancient Civilizations, Machine learning, Climate change, geodynamics, Groundwater, Water balance, Biology, Ecology, Evolution, Behavior and Systematics, Water Science and Technology, Geography, Ecology, Life Sciences, Hydrology (agriculture), Agriculture, Geology, FOS: Earth and related environmental sciences, Watershed, Computer science, Water resource management, Earth and Planetary Sciences, Geotechnical engineering, Geophysics, Hydrological Modeling and Water Resource Management, Archaeology, FOS: Biological sciences, Physical Sciences, Environmental Science, Overexploitation, Geodynamic Evolution of Western Mediterranean Region, Aquifer

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
hybrid