Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ iPolytech Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermogravimetric analysis of the combustion of Tuva coals before and after their carbonization

Authors: A. V. Zhuikov; D. A. Loginov; G. R. Mongush; S. V. Chicherin; N. A. Zemlyansky;

Thermogravimetric analysis of the combustion of Tuva coals before and after their carbonization

Abstract

The process of combusting Tuva coals before and after their carbonization was studied using the methods of thermogravimetric analysis and electron microscopy. Coal samples were subjected to thermomechanical and elemental analysis, which revealed a higher content of volatile substances in Kaa-Khem coal (47.5 %) compared to Chadan coal (10 %). Following carbonization, a decrease in volatile substances to 11.5 % and 9.3 %, respectively, was observed. The conducted thermogravimetric analysis showed the ignition temperature of the coke residue of the Kaa-Khem and Chadan coal samples to increase by 76 °C and 90 °C, respectively, after carbonization. The burnup temperature of the coke residue after carbonizing (723 °C) Kaa-Khem coal samples remained effectively the same, while the Chadan coal showed an increase from 704 °C to 727 °C. The carbonization of coals was established to decrease the maximum reaction rate from 19 % per min to 10% per min for Kaa-Khem coal and from 26 % per min to 11 % per min for Chadan coal. The process of combusting the coke residue after coal carbonization was found to shift into the region of higher temperatures: from 448–723°C to 524–724°C for Kaa-Khem coal and from 436–704 °C to 526–727 °C for Chadan coal. A morphological analysis of the surface of coal particles after carbonization showed the appearance of larger-size pores and cracks on the surface of carbonates compared to coal before carbonization. The conclusion is made that the content of volatile substances, rather than the developed pore structure, comprises the main factor in improving the combustion characteristics of Tuva coals under the conditions of non-isothermal heating before and after their carbonization.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold