
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal

In the last decades a liberalization of the electric market has started; prices are now determined on the basis of contracts on regular markets and their behaviour is mainly driven by usual supply and demand forces. A large body of literature has been developed in order to analyze and forecast their evolution: it includes works with different aims and methodologies depending on the temporal horizon being studied. In this survey we depict the actual state of the art focusing only on the recent papers oriented to the determination of trends in electricity spot prices and to the forecast of these prices in the short run. Structural methods of analysis, which result appropriate for the determination of forward and future values are left behind. Studies have been divided into three broad classes: Autoregressive models, Regime switching models, Volatility models. Six fundamental points arise: the peculiarities of electricity market, the complex statistical properties of prices, the lack of economic foundations of statistical models used for price analysis, the primacy of uniequational approaches, the crucial role played by demand and supply in prices determination, the lack of clearcut evidence in favour of a specific framework of analysis. To take into account the previous stylized issues, we propose the adoption of a methodological framework not yet used to model and forecast electricity prices: a time varying parameters Dynamic Factor Model (DFM). Such an eclectic approach, introduced in the late ‘70s for macroeconomic analysis, enables the identification of the unobservable dynamics of demand and supply driving electricity prices, the coexistence of short term and long term determinants, the creation of forecasts on future trends. Moreover, we have the possibility of simulating the impact that mismatches between demand and supply have over the price variable. This way it is possible to evaluate whether congestions in the network (eventually leading black out phenomena) trigger price reactions that can be considered as warning mechanisms.
- Eni (Italy) Italy
- University of Milan Italy
- Eni United Kingdom
- University Carlo Cattaneo Italy
- University Carlo Cattaneo Italy
Resource /Energy Economics and Policy, Demand and Price Analysis, Electricity Spot Prices, Electricity Spot Prices, Autoregressive Models, GARCH Models, Regime Switching Models, Dynamic Factor Models, GARCH Models, Dynamic Factor Models, Autoregressive Models, Regime Switching Models, jel: jel:Q4, jel: jel:C2, jel: jel:C3
Resource /Energy Economics and Policy, Demand and Price Analysis, Electricity Spot Prices, Electricity Spot Prices, Autoregressive Models, GARCH Models, Regime Switching Models, Dynamic Factor Models, GARCH Models, Dynamic Factor Models, Autoregressive Models, Regime Switching Models, jel: jel:Q4, jel: jel:C2, jel: jel:C3
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
