
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Life Cycle Analysis of a Biorefinery for Activated Carbon and Biomethane Production

A Life Cycle Analysis (LCA) based on ReCiPe 2016 model of a biorefinery case-study was performed. On the basis of an existing Portuguese Anaerobic Digestion plant, the proposed biorefinery hypothesized the use of (i) Maize Cob Waste (MCW) as co-substrate for Anaerobic co-Digestion (AcoD) with Organic Fraction Municipal Solid Waste (OFMSW), (ii) the use of MCW derived activated carbons (ACs) in a H2S removal unit, and (iii) the biogas upgrading to biomethane in a Pressure Swing Adsorption unit. The main aim was to compare the environmental benefits obtained from distinct uses of biogas, specifically the cogeneration of electricity/heat and biomethane production.Three biogas production configurations were considered: (i) AD of standalone hydrolysed OFMSW (hOFMSW); (ii) AcoD of hOFMSW and MCW pre-treated with H2O2 (hOFMSW+PreMCW); and (iii) AcoD of hOFMSW with non-pre-treated MCW (hOFMSW+MCW). The increase of biogas and methane yields obtained with AcoD of hOFMSW+MCW provided an overall better environmental performance than other configurations.The biogas upgrading to biomethane from AcoD of hOFMSW+MCW generated higher environmental impacts than cogeneration, due to the AC production and upgrading processes. If an optimised H2S adsorption capacity is considered, the Fossil Resource Scarcity, Mineral Resource Scarcity, and Global Warming human health impact categories decreased by 20%, 15%, and 17%, respectively, when compared to the base-case upgrading scenario. Further decreases of up to 52%, 23%, and 28% for those impact categories, respectively, are observed when the natural gas used in the OFMSW collection and transportation fleet is substituted by biomethane produced in the biorefinery.
- Universidade Nova de Lisboa Portugal
- INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO Portugal
- Universidade Nova de Lisboa Portugal
- Polytechnic Institute of Porto Portugal
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
