Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multifunctional Landscapes for Dedicated Bioenergy Crops Lead to Low-Carbon Market-Competitive Biofuels

Authors: Nawa Raj Baral; Shruti K. Mishra; Anthe George; Sagar Gautam; Umakant Mishra; Corinne D. Scown;

Multifunctional Landscapes for Dedicated Bioenergy Crops Lead to Low-Carbon Market-Competitive Biofuels

Abstract

Switchgrass is a promising feedstock for cellulosic biorefineries, due to its ability to maintain comparatively high biomass yields across a wide range of soil and climatic conditions. However, there is an incomplete understanding of the economic and environmental tradeoffs associated with cultivating switchgrass on low-productivity land for conversion to biofuels. This study surveys prior literature and demonstrates a new integrated assessment framework, including agroecosystem, ecosystem services valuation, technoeconomic, and life-cycle assessment models, to quantify and contextualize the economic and environmental impacts of switchgrass cultivation on marginal land with downstream conversion to biofuels. Monetizing and incorporating the value of ecosystem services, such as improved water quality benefits from nitrate and sediment reductions, climate change mitigation benefits from CO2 emission reduction, and recreational and pollination benefits from increased biodiversity, the modeled multifunctional landscape reduces the ethanol production cost by 33.3–58.9 cents/L-gasoline-equivalent ($1.3–2.2/gge). Planting switchgrass in low productivity land improves soil health, resulting in the carbon footprint reduction credit of 12.8–20.2 gCO2e/MJ. For an improved switchgrass-to-ethanol conversion pathway with the maximum benefits from ecosystem services, the minimum ethanol selling price and carbon footprint of ethanol, respectively, could reach to 31 cents/L-gasoline-equivalent (47% reduction relative to average gasoline price) and 3 gCO2e/MJ (97% reduction relative to gasoline). This low carbon renewable ethanol leads to substantial State and/or Federal policy incentives (∼$1/L-gasoline-equivalent) providing a large benefit to biorefinery operators, farmers, and the public as a whole.

Country
United States
Keywords

Energy, Life on Land, Switchgrass feedstock supply, Carbon credit, Climate Action, Engineering, Affordable and Clean Energy, Ionic liquid pretreatment, Ecosystem services, Lifecycle assessment, Responsible Consumption and Production, Techno-economic analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green