Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Thermal Engi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Thermal Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2023
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
Research Collection
Article . 2023
Data sources: Datacite
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adsorption Dynamics and Hydrothermal Stability of Mofs Aluminium Fumarate, Mil-160 (Al), and Cau-10-H, and Zeotype Tiapso for Heat Transformation Applications

Authors: Andreas Velte; Eric Laurenz; Lina Rustam; Philipp P.C. Hügenell; Matthias Henninger; Jan Seiler; Gerrit Füldner;

Adsorption Dynamics and Hydrothermal Stability of Mofs Aluminium Fumarate, Mil-160 (Al), and Cau-10-H, and Zeotype Tiapso for Heat Transformation Applications

Abstract

Metal-organic frameworks (MOFs) can be beneficial for heat transformation applications due to their potentially high water uptake and tunable working temperature levels. Although the hydrothermal stability has been assessed in some cases in terms of maximum water uptake and structural changes, there is no data on the impact of hydrothermal stress tests on adsorption dynamics. However, to maintain the designed heating or cooling power in the application, the hydrothermal stability in terms of both water uptake and adsorption dynamics is decisive. To close this gap, we present experimental data for the comprehensive evaluation of hydrothermal stability for three different MOFs and the commercially available zeotype TiAPSO. The hydrothermal stress test includes around 70,000 temperature swing cycles on aluminium sheets with a binder-based coating of different adsorbents. As a novelty of this study, adsorption dynamics are determined before and after the hydrothermal stress test using effective thermal resistances and the characteristic temperature difference. Our results show degradation in terms of a decrease in uptake around 5–10% after hydrothermal stress test for all samples. Under temperature boundary conditions relevant for the application, MIL-160(Al) shows even a drastic uptake reduction of around 35–45%. Except for CAU-10-H, none of the adsorbents show a degradation in terms of increased heat and mass transfer resistance. In case of CAU-10-H, the overall effective heat and mass transfer resistance increases by around 30–40% after the hydrothermal stress test. These results indicate that the hydrothermal stability of MOFs must be assessed in terms of both, uptake and adsorption dynamics, to ensure stable long-term performance in real-world devices.

Applied Thermal Engineering, 227

ISSN:1359-4311

ISSN:1873-5606

Countries
Switzerland, Germany, Switzerland
Keywords

690, info:eu-repo/classification/ddc/690, MIL-160 (Al), Adsorption dynamics, CAU-10-H, Aluminium fumarate, Heat and mass transfer resistances, Hydrothermal stability; Adsorption dynamics; MOF; CAU-10-H; Aluminium fumarate; TiAPSO; MIL-160 (Al); Heat and mass transfer resistances, Hydrothermal stability, TiAPSO, MOF

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%