
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction of Climate Change Impacts on Heatstroke Cases in Japan's 47 Prefectures with the Effect of Long-Term Heat Adaptation

pmid: 37302741
One of the negative consequences of increased air temperatures due to global warming is the associated increase in heat-related mortality and morbidity. Studies that focused on future predictions of heat-related morbidity do not consider the effect of long-term heat adaptation measures, nor do they use evidence-based methods. Therefore, this study aimed to predict the future heatstroke cases for all 47 prefectures of Japan, by considering long-term heat adaptation by translating current geographical differences in heat adaptation to future temporal heat adaptation. Predictions were conducted for age groups of 7-17, 18-64, and ≥65 years. The prediction period was set to a base period (1981-2000), mid-21st century (2031-2050), and the end of the 21st century (2081-2100). We found that the average heatstroke incidence (number of patients with heatstroke transported by ambulance per population) in Japan under five representative climate models and three greenhouse gas (GHG) emissions scenarios increased by 2.92- for 7-17 years, 3.66- for 18-64 years, and 3.26-fold for ≥65 years at the end of the 21st century without heat adaptation. The corresponding numbers were 1.57 for 7-17 years, 1.77 for 18-64 years, and 1.69 for ≥65 years with heat adaptation. Furthermore, the average number of patients with heatstroke transported by ambulance (NPHTA) under all climate models and GHG emissions scenarios increased by 1.02- for 7-17 years, 1.76- for 18-64 years, and 5.50-fold for ≥65 years at the end of 21st century without heat adaptation, where demographic changes were considered. The corresponding numbers were 0.55 for 7-17 years, 0.82 for 18-64 years, and 2.74 for ≥65 years with heat adaptation. The heatstroke incidence, as well as the NPHTA, substantially decreased when heat adaptation was considered. Our method could be applicable to other regions across the globe.
Thermotolerance, Greenhouse Gases, Hot Temperature, Japan, Climate Change, Heat Stroke, Humans, Aged
Thermotolerance, Greenhouse Gases, Hot Temperature, Japan, Climate Change, Heat Stroke, Humans, Aged
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
