Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agder University Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Spectral Irradiance Variation in Northern Europe Using Average Photon Energy Distributions

Authors: Basant Raj Paudyal; Sakthi Guhan Somasundaram; Atse Louwen; Angele H.M.E. Reinders; Wilfried G.J.H.M. van Sark; Dirk Stellbogen; Carolin Ulbrich; +1 Authors

Analysis of Spectral Irradiance Variation in Northern Europe Using Average Photon Energy Distributions

Abstract

One major factor affecting the energy yield of photovoltaic modules is the spectral distribution of incident solar radiation. As spectral irradiance data is scarce, this study provides further documentation of recorded spectra at tilt angle 30°– 45°over a period from one to several years, with the resulting distributions of average photon energy (APE) in the 350–1050 nm wavelength range, from five locations in northern Europe. The results show a general trend of higher monthly APE values in summer and lower values in winter, with more pronounced APE variation at increasing latitude. Compared to the reference APE value of 1.88 eV, the largest variation in monthly APE is seen for the northernmost location of Grimstad, Norway, ranging from 1.82 eV to 1.93 eV between January and July with an annual average APE of 1.90 eV. The smallest variation is found for Merklingen, Germany, ranging from 1.86 eV to 1.88 eV between March and July, with an annual average APE of 1.86 eV. Comparing the annual average APE values of the various locations, the study shows a slightly blue-shifted spectrum for Berlin, Enschede and Grimstad, whereas Merklingen experiences a slightly red-shifted spectrum and the APE at Utrecht is similar to the standard reference spectrum. The simulations through SMARTS show air mass, water vapor and aerosols as the major parameters affecting the spectrum. During the winter months, distinct contributions from both clear and cloudy sky conditions result in a bi-modal APE distribution for all locations, which is not observed during the summer months. Analysis of APE demonstrates different site-specific behaviors, even though all sites are categorized in the same Köppen–Geiger (KG) climate class. These differences arise mainly due to atmospheric factors, whereas dissimilarity in albedo conditions, plane of tilt and instrumentation also have some contributions.

Countries
Netherlands, Norway, Norway
Keywords

Spektral solinnstråling, Nothern Europe, spectral irradiance, Renewable Energy, Sustainability and the Environment, SDG 13 – Klimaatactie, VDP::Technology: 500, Northern Europe, PV Solar Panel, Spectral irradiance, Photovoltaics, VDP::Teknologi: 500, Clearness index, PV Solceller, average photon energy, Taverne, Average photon energy, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Spectral solar irradiance, SDG 7 – Betaalbare en schone energie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Energy Research