
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photoelectrochemical Passivation of Undoped N‑Inp by Ultra‑Thin Polyphosphazene Film: Towards a Perfect Photoanode?

For the first time, the photoanodic behavior of undoped n-InP (≈ 1015 atoms.cm−3) is studied in liquid ammonia at low temperature (-55 °C) under atmospheric pressure. Under illumination, the low doping level provides unique conditions to monitor charge transfer at the interface since only photo-generated holes are involved in the passivation mechanism. Specific photoanodic transient phenomena are observed due to the photo-holes availability at the interface which depends on light intensity. Cycle voltammograms differ strongly from the initial ones in the dark. Photo-electrochemical transformations of InP responses are followed by cycle voltammetry for two conditions of illumination; under low and high luminous flux intensity. In spite of a pure photo-holes process for both cases, voltammograms are highly dependent on light intensity while impedance measurements present the same strong modifications. One-volt positive shift of the flat band potential is indeed observed. However, whatever is the luminous flux intensity, a low photo-anodic charge is consumed (≈ 1 mC.cm−2) and the same ultra-thin film of polyphosphazene onto n-InP is shown by XPS analyses. Properties of this new interface is discussed in term of energy diagram and photo-holes transfer ability. Under these experimental conditions used, (J ≤ 100 µA.cm−2 and Q ≈ 50 mC.cm−2), the passivated interface behaves as a photoanode toward ammonia oxidation since the ultra-thin film is maintained onto InP.
Passivation, Photoelectrochemistry, III-V semiconductors, Energy diagram, [CHIM] Chemical Sciences, [CHIM]Chemical Sciences, Ultra-thin film
Passivation, Photoelectrochemistry, III-V semiconductors, Energy diagram, [CHIM] Chemical Sciences, [CHIM]Chemical Sciences, Ultra-thin film
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
