Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environment Internat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environment International
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environment International
Article . 2024
Data sources: DOAJ
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.5194/egusph...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Influence of Humid Heat on Morbidity of Megacity Shanghai in China

Authors: Chen Liang; Jiacan Yuan; Xu Tang; Haidong Kan; Wenjia Cai; Jianmin Chen;

The Influence of Humid Heat on Morbidity of Megacity Shanghai in China

Abstract

Background: Increased attention has been paid to humid-heat extremes as they are projected to increase in both frequency and intensity. However, it remains unclear how compound extremes of heat and humidity affects morbidity when the climate is projected to continue warming in the future, in particular for a megacity with a large population.Methods: We chose the Wet-Bulb Globe Temperature (WBGT) index as the metric to characterize the humid-heat exposure. The historical associations between daily outpatient visits and daily mean WBGT was established using a Distributed Lag Non-linear Model (DLNM) during the warm season (June to September) from 2013 to 2015 in Shanghai, a prominent megacity of China. Future morbidity burden related to the combined effect of high temperature and humidity were projected under four greenhouse gases (GHGs) emission scenarios (SSP126, SSP245, SSP370 and SSP585).Results: The humid-heat weather was significantly associated with a higher risk of outpatient visits in Shanghai than the high-temperature conditions. Relative to the baseline period (2010–2019), the morbidity burden due to humid-heat weather was projected to increase 4.4% (95% confidence interval (CI): 1.1% –10.1%) even under the strict emission control scenario (SSP126) by 2100. Under the high-GHGs emission scenario (SSP585), this burden was projected to be 25.4% (95% CI: 15.8% –38.4%), which is 10.1% (95% CI: 6.5% –15.8%) more than that due to high-temperature weather. Our results also indicate that humid-hot nights could cause large morbidity risks under high-GHGs emission scenarios particularly in heat-sensible diseases such as the respiratory and cardiovascular disease by the end of this century.Conclusions: Humid heat exposures significantly increased the all-cause morbidity risk in the megacity Shanghai, especially in humid-hot nights. Our findings suggest that the combined effect of elevated temperature and humidity is projected to have more substantial impact on health compared to high temperature alone in a warming climate.

Related Organizations
Keywords

Environmental sciences, Climate warming, China, Greenhouse Gases, Hot Temperature, Humid-heat, Climate Change, Temperature, GE1-350, Humidity, WBGT, Morbidity, Megacity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Related to Research communities
Energy Research