Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RiuNet
Article . 2024
License: CC BY NC ND
Data sources: RiuNet
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogen Consumption and Durability Assessment of Fuel Cell Vehicles in Realistic Driving

Authors: M. Piras; V. De Bellis; E. Malfi; R. Novella; M. Lopez-Juarez;

Hydrogen Consumption and Durability Assessment of Fuel Cell Vehicles in Realistic Driving

Abstract

[EN] This study proposes a predictive equivalent consumption minimization strategy (P-ECMS) that utilizes velocity prediction and considers various dynamic constraints to mitigate fuel cell degradation assessed using a dedicated sub -model. The objective is to reduce fuel consumption in real -world conditions without prior knowledge of the driving mission. The P-ECMS incorporates a velocity prediction layer into the Energy Management System. Comparative evaluations with a conventional adaptive-ECMS (A-ECMS), a standard ECMS with a well -tuned constant equivalence factor, and a rule -based strategy (RBS) are conducted across two driving cycles and three fuel cell dynamic restrictions (|di/dt|max <= 0.1, 0.01, and 0.001 A/cm2s). The proposed strategy achieves H2 consumption reductions ranging from 1.4% to 3.0% compared to A-ECMS, and fuel consumption reductions of up to 6.1% when compared to RBS. Increasing dynamic limitations lead to increased H2 consumption and durability by up to 200% for all tested strategies.

This research is part of the project TED2021-131463B-I00 (DI-VERGENT) funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/PRTR.

Countries
Italy, Italy, Spain
Keywords

MAQUINAS Y MOTORES TERMICOS, 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos, Fuel cell hybrid electric vehicle; Hydrogen; MEA degradation; Predictive energy management strategy; Realistic driving conditions; Velocity forecasting, Fuel cell hybrid electric vehicle, INGENIERIA AEROESPACIAL, MEA degradation, Predictive energy management strategy, Velocity forecasting, Hydrogen, Realistic driving conditions

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research