Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Environme...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Environmental Management
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fire Suppression and Land-Use Strategies Drive Future Dynamics of an Invasive Plant in a Fire-Prone Mountain Area Under Climate Change

Authors: Cristina G. Lima; João C. Campos; Adrián Regos; João P. Honrado; Paulo M. Fernandes; Teresa R. Freitas; João A. Santos; +1 Authors

Fire Suppression and Land-Use Strategies Drive Future Dynamics of an Invasive Plant in a Fire-Prone Mountain Area Under Climate Change

Abstract

Woody invasive alien species can have profound impacts on ecosystem processes and functions, including fire regulation, which can significantly affect landscape resilience. Acacia dealbata, a widespread invasive alien plant in the Iberian Peninsula, holds well-known fire-adaptation traits (e.g., massive soil seed banks and heat-stimulated seed germination). In this study, we assess to what extent fire suppression and land-use strategies could affect the potential distribution of A. dealbata in a fire-prone transboundary protected mountain area of Portugal and Spain, using Habitat Suitability Models. Specifically, we predicted changes in habitat suitability for A. dealbata between years 2010 and 2050. We explored the potential impacts of two land-use strategies ('Business-as-usual' or 'High Nature Value farmlands') combined with three levels of fire suppression effectiveness using the biomod2 package in R. We also considered the potential effects of two climate change scenarios (RCP4.5 and RCP8.5). Our modeling approach demonstrated a strong capacity to predict habitat suitability using either climate or land-cover information alone (AUC climate = 0.947; AUC LC = 0.957). According to climate-based models, A. dealbata thrives under conditions characterized by higher precipitation seasonality, higher precipitation in the warmest month, and higher minimum temperature in the coldest month. Regarding land cover, A. dealbata thrives mainly in landscapes dominated by urban areas and evergreen forest plantations. Our models forecasted that habitat suitability by 2050 could either increase or decrease depending on the specific combinations of fire suppression, land-use, and climate scenarios. Thus, a combination of business-as-usual and fire-exclusion strategies would enhance habitat suitability for the species. Conversely, management promoting High Nature Value farmlands would decrease the available suitable habitat, particularly under low fire suppression efforts. These findings suggest that promoting sustainable farming activities could impede the spread of A. dealbata by reducing habitat availability, while strategies aiming at fire-exclusion could facilitate its expansion, likely by enabling establishment and large seed production. This study highlights the complex interplay between fire-prone invasive species, fire and land-use strategies, and climate change; and thus the need to consider the interactions between land-use and fire management to promote invasive species control and landscape resilience.

Keywords

Conservation of Natural Resources, Portugal, Spain, Climate Change, Introduced Species, Fires, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid
Related to Research communities
Energy Research