
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling and Evaluating Different Multi-Carrier Energy System Configurations for a Dutch House

The urge to reduce the dependence on natural gas for heating at the residential level has led to the deployment of different fossil fuel-free alternatives. In the Netherlands, two technologies are leading the transition: heat pumps, due to their high COP, and photovoltaic–thermal systems, due to their dual electric-thermal output. However, both represent a challenge for users and grid operators, aside from their stochastic behavior. Heat pumps alone can surpass a typical Dutch house's total energy and power consumption. Photovoltaic–thermal systems, as their only electric homologs, usually have a mismatch between generation and demand, causing energy injections to the grid. From the electric perspective, storage systems are a proven solution to reduce the energy exchange with the distribution network. This paper proposes four multi-carrier energy system configurations for a Dutch household, comprising different combinations of a photovoltaic–thermal system, a battery energy storage, a heat pump, and an underground water tank thermal energy system, providing analytical models for every component (including the thermal losses from the thermal storage to the ground), and the space heating and electrical demands. We determined the components’ compatibility and evaluated the combinations considering their thermal performance, electrical performance, and equivalent CO 2 emissions. The results suggest that using a heat pump combined with a photovoltaic system and a battery provides the best trade-off. The photovoltaic–thermal system alone could not supply the thermal demand required for comfortable space heating nor reach temperatures high enough to charge the thermal storage. Combining the thermal storage with the heat pump allows a certain degree of flexibility for the heat pump activation at the cost of COPs between 0.8 and 1.38 when used to charge the thermal storage, thus increasing energy consumption and equivalent emissions considerably. ; DC systems, Energy conversion & Storage
- Delft University of Technology Netherlands
Heat pump, 690, Photovoltaic thermal system, Heating electrification, Thermal energy storage systems
Heat pump, 690, Photovoltaic thermal system, Heating electrification, Thermal energy storage systems
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
