Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NTNU Open
Article . 2025
Data sources: NTNU Open
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From Flexible Building to Resilient Energy Communities: A Scalable Decentralized Energy Management Scheme Based on Collaborative Agents

Authors: Mohammad Hosseini; Silvia Erba; Ahmad Mazaheri; Amin Moazami; Vahid M. Nik;

From Flexible Building to Resilient Energy Communities: A Scalable Decentralized Energy Management Scheme Based on Collaborative Agents

Abstract

Extreme conditions caused by climate change and other crises call for enhancing the resilience of buildings and urban energy systems. This paper investigates the role of collaborative decision-making to improve the performance of single buildings and the unified whole in the form of a cohesive cluster of energy consumers to enhance resilience. CIRLEM, the previously developed energy management approach, provides flexibility in energy systems through collective behavior of entities and deploying a lightweight Reinforcement Learning algorithm. This research contributes to developing a novel signal generation structure including price- and demand-based function to stimulate the cohesion attribute. Extended thermal comfort margins are introduced to broaden the flexibility potential, and reward function includes thermal zones categories. The energy management approach and extended comfort constraints is tested under an extreme cold winter in a pilot ecosystem located in Norway made of several buildings characterized by different sizes, use types, performance and energy systems. Acting individually, buildings could save 28 % and 13 % energy and cost, while acting as a collaborative cluster, energy use and cost are reduced by 42 % and 40 %. Through collaboration between buildings, high-performance buildings could help others under high energy demand periods to keep their functionality toward the cluster’s goal.

Country
Norway
Keywords

Annan samhällsbyggnadsteknik, VDP::Machinery energy and environmental technology: 573, VDP::Maskinteknisk energi- og miljøteknologi: 573, Climate Resilient Buildings, Energy Flexibility, Decentralized Energy Management, Complex System, Other Civil Engineering, Reinforcement Learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research