Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Marine Pollution Bul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Marine Pollution Bulletin
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Spatiotemporal Variations of Marine Nematode Populations May Serve as Indicators of Changes in Marine Ecosystems

Authors: Hsuan-Tung, Lin; Jiue-In, Yang; Yu-Ting, Wu; Yo-Jin, Shiau; Li, Lo; Shan-Hua, Yang;

The Spatiotemporal Variations of Marine Nematode Populations May Serve as Indicators of Changes in Marine Ecosystems

Abstract

The volcanic island, Kueishan Island, harbors two unique shallow-water ecosystems: hydrothermal vents and coral communities. The unique geologic features render the island an ideal place as a spectrum for studying two different ecosystems and mimicking the impacts of climate change on coral reef biota in the future. However, little is known about the meiofauna community there. Hence, we investigated the diversity and composition of free-living marine nematodes over two years by collecting individuals from sediments sampled across a gradient of habitats, including hydrothermal vents, buffering sites, and coral reefs. During the first year, we also monitored abiotic factors, such as sediment and water properties, along with biotic factors, including bacterial diversity assessed through amplicon sequencing, to evaluate their influence on the nematode community. Our findings revealed markedly low nematode abundance and diversity at sulfide-rich vent sites (abundance < 5 ind./L; Shannon index < 1) throughout the study period, contrasting with the highest levels observed at the coral community site (<165.4 ind./L, Shannon index = 1.65). The food supply seemed to be the main factor that drove the difference, as nematode abundance and diversity increased with sedimentary total organic carbon and bacterial diversity. In addition, significant differences in nematode composition were observed between the different sampling sites. Combined with nematode and microbiome data, the buffering site that endured more stress from vent activities was recognized. Our results suggest that the dynamics of nematode communities could be incorporated into projects assessing environmental impacts on coral reef ecosystems.

Keywords

Geologic Sediments, Hydrothermal Vents, Nematoda, Coral Reefs, Climate Change, Microbiota, Animals, Biodiversity, Ecosystem, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid
Related to Research communities
Energy Research