Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomass and Bioenergy
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2139/ssrn.5...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Role of Biogenic Waste Composition on Pyrolysis: Part Ii – Char Co2 Adsorption Capacity

Authors: África Navarro; Isabel Fonts; Joaquín Ruiz; Jesús Ceamanos; Noemí Gil-Lalaguna; Javier Ábrego; Gloria Gea;

The Role of Biogenic Waste Composition on Pyrolysis: Part Ii – Char Co2 Adsorption Capacity

Abstract

The CO2 adsorption capacities (AC) of biochars obtained at 350, 550, and 750 °C from the main organic (cellulose, lignin, and protein) and inorganic (CaCO3) macro-components of biogenic waste, as well as from co-digested manure (CDM), have been determined for different CO2 concentrations (2–83 vol%) at 25 °C and atmospheric pressure. CO2 adsorption isotherms have been determined using two different experimental methodologies: thermogravimetric and fixed-bed dynamic adsorption tests, yielding similar results. The composition effect has been analyzed by comparing the adsorption performance of the chars derived from individual macro-components and the potential interactions occurring during their co-pyrolysis. Lignin and cellulose-derived chars showed higher CO2 retention (≈77 mg gbiochar−1) than those produced from protein (≈40 mg gbiochar−1). Pyrolyzed CaCO3 exhibited negligible CO2 adsorption. For surrogate_CDM chars, prepared at pyrolysis temperatures high enough to decompose CaCO3 in the organic matrix, experimental results showed a synergistic effect, with AC between 14 % and 47 % higher than theoretical predictions. This decomposition promoted the reverse Boudouard reaction and enhanced char microporosity. However, the improvement was insufficient to offset the dilution effect caused by the high CaCO3 content. AC results have been discussed based on the biochar textural and chemical properties, with ultramicroporosity being the key factor determining adsorption capacity. The AC of CDM-derived sorbents is similar to that of cellulose-derived, expressed per gram of waste (7–13 mg gwaste−1). Furthermore, the biochars retained at least 80 % of their initial AC after 3 adsorption-desorption cycles, indicating their potential for stable CO2 capture.

Country
Spain
Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research