Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Egyptian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Egyptian Journal of Chemistry
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of helium-neon red laser for increasing biohydrogen production from anaerobic digestion of biowastes

Authors: Mohamed A. Moselhy; Mohamed Samer; Ahmed A. Abdelqader; Ahmed Hamed Arisha; Abdallah S. Ali; Yasser A. Attia; E. Abdelsalam;

Application of helium-neon red laser for increasing biohydrogen production from anaerobic digestion of biowastes

Abstract

Biohydrogen has significant feasibility since biological processes are much less energy intensive compared with electrolysis and thermo-chemical processes. It is widely recognized that considerable amounts of hydrogen (H2) can be produced from renewable resources without using energy from fossil fuels. Biological processes and bacterial fermentation are considered as the most environmentally friendly alternatives for satisfying future hydrogen demand. Biohydrogen production from agricultural and agro-industrial solid waste and wastewater is considered as highly advantageous as materials of this kind are abundant, cheap and biodegradable. The combustion of H2 with oxygen produces water as its only product: Unlike other fuels, the combustion of H2 does not produce carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), hydrocarbons or particulate matter (PM). Therefore, hydrogen is an environmentally friendly fuel where endeavors focus on producing specially designed internal combustion engines that can use H2 as fuel. The results showed that laser irradiated inoculum increased biohydrogen production by 1.2 times of the control. Therefore, in this research, it was hypothesized that exposing purple non-sulfur bacterial (PNSB) mix consortium to Helium-Neon red laser for 2 hours increased cell activity and consequently the biohydrogen production from food wastes through photo-fermentation process.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze