Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Water and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water and Climate Change
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying water–energy links and related carbon emissions in cities

Authors: Kenway, S.J.; Lant, P.A.; Priestley, T.;

Quantifying water–energy links and related carbon emissions in cities

Abstract

To date, key water–energy connections have not been systematically quantified. Nor has their potential for contributing to greenhouse gas mitigation been evaluated. Lack of knowledge of these links, particularly within cities, is viewed as a major limitation to energy-sensitive urban water management and integrated urban design. This paper fills part of this void. The key contribution is a new conceptual model coupled with a systematic review of the connections of influence. Drawing on Australian and international data, the results provide a structured estimate of water-related energy use and associated emissions in a hypothetical city of 1,000,000 people. This demonstrates that water-related energy use accounts for 13% of total electricity and 18% of the natural gas used by the population in the average case. This represents 9% of the total primary energy demand within Australia or 8% of total national territorial greenhouse gas emissions. Residential, industrial and commercial water-related energy use constitutes 86% of water-related greenhouse gas emissions. We conclude that urban water is a significant and overlooked lever that could significantly influence urban energy consumption.

Country
Australia
Keywords

690, Energy, Monitoring, Policy and Law, Future cities, Urban metabolism, Water, Water-sensitive city, 2306 Global and Planetary Change, Greenhouse gas, 2312 Water Science and Technology, 1902 Atmospheric Science, 2308 Management

Powered by OpenAIRE graph
Found an issue? Give us feedback